Algoritma JST (Jaringan Saraf Tiruan) dengan teknik Simplex Optimization

Algoritma JST (Jaringan Saraf Tiruan) dengan teknik Simplex Optimization adalah salah satu algoritma berbasis jaringan saraf yang dapat digunakan untuk pengambilan keputusan. Contoh yang dibahas kali ini adalah mengenai penentuan penerimaan pengajuan kredit sepeda motor baru berdasarkan kelompok data yang sudah ada.
Inti perhitungan pada algoritma berbasis jaringan adalah untuk mencari bobot terbaik dari contoh / sampel data yang sudah ada. Karena hasil pada contoh data sudah diketahui, maka nilai bobot akan dihitung berdasarkan nilai hasil yang sudah tersedia, sampai ditemukan nilai bobot terbaik yang paling banyak cocok apabila dihitungkan kembali pada data awal. Kemudian nilai bobot tersebut dapat digunakan untuk menghitung data lain yang tidak diketahui hasilnya.
Algoritma ini adalah variasi lain dari Algoritma JST (Jaringan Saraf Tiruan), dimana sistem pencarian matriks bobot yang umum digunakan adalah menggunakan PSO (Particle Swarm Optimization), Back-Propagation, dan EO (Evolutionary Optimization). Pada pembahasan kali ini akan digunakan teknik yang cukup sederhana yaitu Simplex Optimization.
Simplex Optimization bekerja dengan cara membentuk segitiga solusi yang dikatakan sebagai solusi terbaik – lainnya – terburuk. Pada setiap perhitungan, segitiga ini akan dihitung sehingga semakin mendekati solusi yang terbaik. Apabila segitiga ini digambar secara berurutan pada setiap perulangan, gerakan segitiga yang terjadi mirip dengan pola gerakan amoeba, oleh karena itu teknik ini juga disebut sebagai AMO (Amoeba Method Optimization).



Diasumsikan ada 8 data pelanggan yang sudah diketahui datanya, yaitu Pelanggan A,B,C,D,E,F,G,H
Masing-masing pelanggan memiliki kriteria, yaitu umur, jenis kelamin, skor kepribadian, dan memiliki nilai hasil yaitu Diterima / Ditolak
Diasumsikan 8 data tersebut adalah sebagai berikut:

Pelanggan Umur Jenis Kelamin Skor Kepribadian Hasil
Pelanggan A 44 Laki-laki 3.55 Diterima
Pelanggan B 52 Perempuan 4.71 Diterima
Pelanggan C 60 Perempuan 6.56 Ditolak
Pelanggan D 56 Laki-laki 6.8 Ditolak
Pelanggan E 51 Laki-laki 6.94 Ditolak
Pelanggan F 46 Perempuan 6.52 Ditolak
Pelanggan G 48 Laki-laki 4.25 Diterima
Pelanggan H 58 Perempuan 5.71 Diterima

Contoh data pelanggan awal adalah sebagai berikut:
Untuk Kriteria Jenis Kelamin:
Laki-laki dilambangkan dengan angka -1
Perempuan dilambangkan dengan angka +1
Untuk kriteria Nilai Hasil:
Terdapat 2 kolom untuk merepresentasikan kondisi Diterima dan Ditolak
Jika kondisi Diterima, maka inputan data kolom adalah 1, 0
Jika kondisi Ditolak, maka inputan data kolom adalah 0, 1

Dim data(9)() As Double
data(0) = New Double() {44, -1, 3.55, 1, 0}
data(1) = New Double() {52, +1, 4.71, 1, 0}
data(2) = New Double() {60, +1, 6.56, 0, 1}
data(3) = New Double() {56, -1, 6.8, 0, 1}
data(4) = New Double() {51, -1, 6.94, 0, 1}
data(5) = New Double() {46, +1, 6.52, 0, 1}
data(6) = New Double() {48, -1, 4.25, 1, 0}
data(7) = New Double() {58, +1, 5.71, 1, 0}



Selanjutnya ada 2 orang pelanggan baru yang mengajukan kredit sepeda motor
Maka tentukan pelanggan ini nantinya akan termasuk dalam kelompok Diterima / Ditolak
Diasumsikan data awalnya adalah sebagai berikut:

Pelanggan I 47 Perempuan 6.05
Pelanggan J 52 Laki-Laki 5

Contoh data pelanggan baru adalah sebagai berikut:
Untuk kriteria Nilai Hasil:
Terdapat 2 kolom untuk merepresentasikan kondisi Diterima dan Ditolak
Karena belum diketahui nilai hasilnya, maka semua inputan data adalah -1, -1

data(8) = New Double() {47, +1, 6.05, -1, -1}
data(9) = New Double() {52, -1, 5, -1, -1}

Langkah-langkah penggunaan algoritma ini adalah

1. Lakukan normalisasi data untuk kriteria Umur dan Skor Kepribadian
Penjelasan lebih lanjut dapat dilihat pada penjelasan skrip dibawah ini (poin 1a – 1c)

1a. Hitung nilai rata-rata tiap-tiap kolom
yaitu dengan rumus: jumlah semua data dibagi dengan jumlah datanya

Dim total As Double = 0.0
For r = 0 To jumlahBaris - 1
	total += data(r)(c)
Next r
Dim rata2 As Double = total / jumlahBaris
hasil(0)(c) = rata2

1b. Hitung nilai standar deviasi tiap-tiap kolom
yaitu dengan rumus: akar dari ((kuadrat dari (jumlah dari (data – rata-rata))) / jumlah data)

Dim totalKuadrat As Double = 0.0
For r = 0 To jumlahBaris - 1
	totalKuadrat += (data(r)(c) - rata2) * (data(r)(c) - rata2)
Next r
Dim stdDev As Double = Math.Sqrt(totalKuadrat / jumlahBaris)
hasil(1)(c) = stdDev

1c. Normalisasi data dihitung dengan rumus (data – (rata-rata kriteria tersebut)) / standar deviasi kriteria tersebut

For c = 0 To kolom.Length - 1
	Dim j As Integer = kolom(c)
	Dim rata2 As Double = hasil(0)(j)
	Dim stdDev As Double = hasil(1)(j)

	For i = 0 To jumlahBaris - 1
		data(i)(j) = (data(i)(j) - rata2) / stdDev
	Next i
Next c

2. Tentukan skema awal untuk algoritma ini.
Algoritma ini dapat digunakan untuk melakukan perhitungan yang memiliki banyak input dan menghasilkan banyak output
Diasumsikan dalam kasus ini, skema yang digunakan adalah 3 – 4 – 2, dimana:

  • 3 adalah jumlah saraf input, karena ada 3 kriteria awal, yaitu Umur, Jenis Kelamin, dan Skor Kepribadian
  • 4 adalah jumlah saraf tersembunyi yang digunakan. Jumlah saraf tersembunyi harus lebih dari jumlah saraf input

dalam kasus ini bisa lebih dari 4, tetapi hanya digunakan 4 saja untuk mempercepat perhitungan

  • 2 adalah jumlah saraf output, Karena kriteria nilai hasil bergantung pada nilai 2 kolom, yaitu 1,0 jika diterima dan 0,1 jika ditolak
Const jumlahSarafInput As Integer = 3
Const jumlahSarafTersembunyi As Integer = 4
Const jumlahSarafOutput As Integer = 2
Dim jst As New JaringanSaraf(jumlahSarafInput, jumlahSarafTersembunyi, jumlahSarafOutput)

* Diperlukan sebuah class untuk menyimpan semua matriks data untuk digunakan dalam perhitungan algoritma ini. Class ini dinamakan class JaringanSaraf. Deklarasi awal untuk setiap pengisian data adalah sebagai berikut

Public Class JaringanSaraf
    Private rnd As Random

    Private jumlahSarafInput As Integer
    Private jumlahSarafTersembunyi As Integer
    Private jumlahSarafOutput As Integer

    Private inputs As Double()

    'Matriks data untuk perhitungan jaringan saraf input-tersembunyi
    Private ihBobot As Double()()                   'Nilai bobot pada jaringan saraf input-tersembunyi
    Private hBias As Double()                       'Nilai bias pada jaringan saraf tersembunyi
    Private hOutput As Double()                     'Nilai output sementara pada jaringan saraf tersembunyi

    'Matriks data untuk perhitungan jaringan saraf tersembunyi-output
    Private hoBobot As Double()()                   'Nilai bobot pada jaringan tersembunyi-output
    Private oBias As Double()                       'Nilai bias pada jaringan saraf output

    Private outputs As Double()

    Public Sub New(jumlahSarafInput As Integer, jumlahSarafTersembunyi As Integer, jumlahSarafOutput As Integer)
        rnd = New Random(0)
        Me.jumlahSarafInput = jumlahSarafInput
        Me.jumlahSarafTersembunyi = jumlahSarafTersembunyi
        Me.jumlahSarafOutput = jumlahSarafOutput

        Me.inputs = New Double(jumlahSarafInput - 1) {}

        Dim ihBobot As Double()() = New Double(jumlahSarafInput - 1)() {}
        For r As Integer = 0 To ihBobot.Length - 1
            ihBobot(r) = New Double(jumlahSarafTersembunyi - 1) {}
        Next
        Me.ihBobot = ihBobot
        Me.hBias = New Double(jumlahSarafTersembunyi - 1) {}
        Me.hOutput = New Double(jumlahSarafTersembunyi - 1) {}

        Dim hoBobot As Double()() = New Double(jumlahSarafTersembunyi - 1)() {}
        For r As Integer = 0 To hoBobot.Length - 1
            hoBobot(r) = New Double(jumlahSarafOutput - 1) {}
        Next
        Me.hoBobot = hoBobot
        Me.oBias = New Double(jumlahSarafOutput - 1) {}

        Me.outputs = New Double(jumlahSarafOutput - 1) {}
    End Sub
	
	. . .
End Class

3. Sebelum masuk ke dalam fungsi utama perhitungan, ada beberapa parameter yang perlu diperhatikan, yaitu:

3a. Tentukan Jumlah maksimal Epoch
Epoch adalah banyak perulangan yang dilakukan dalam 1 kali proses pembelajaran
Diasumsikan dalam kasus ini jumlah maksimal Epoch adalah 100

Const maksEpoch As Integer = 100

4. Lakukan proses pencarian nilai bobot dan bias terbaik
Metode yang digunakan adalah Simplex Optimization
Penjelasan lebih detail tentang fungsi ini dapat dilihat pada penjelasan skrip dibawah ini (poin 4a – 4i)

Dim bobotTerbaik As Double() = jst.Simplex(contohData, maksEpoch)
jst.setBobot(bobotTerbaik)

Memasuki perhitungan utama pada fungsi Simplex

* Inisialisasi jumlah bobot yang digunakan dalam perhitungan

  • jumlah nilai bobot pada jaringan saraf input-tersembunyi adalah jumlah saraf input * jumlah saraf tersembunyi (3 * 4 = 12 buah)
  • jumlah nilai bias pada jaringan saraf input-tersembunyi adalah jumlah saraf tersembunyi (4 buah)
  • jumlah nilai bobot pada jaringan saraf tersembunyi-output adalah jumlah saraf tersembunyi * jumlah saraf output (4 * 2 = 8 buah)
  • jumlah nilai bias pada jaringan saraf tersembunyi-output adalah jumlah saraf output (2 buah)

Sehingga, banyak data yang diperlukan adalah 12 + 4 + 8 + 2 = 26 buah data
Fungsi ini akan mencari data yang memiliki bobot terendah diantara semua data input, dan akan mengembalikan 26 buah data dengan susunan seperti diatas

Dim jumlahBobot As Integer = (Me.jumlahSarafInput * Me.jumlahSarafTersembunyi) + (Me.jumlahSarafTersembunyi * Me.jumlahSarafOutput) + Me.jumlahSarafTersembunyi + Me.jumlahSarafOutput

4a. Ambil 3 nilai acak untuk dijadikan sebagai solusi sementara, yaitu solusi terbaik, terburuk, lainnya
Untuk masing-masing nilai tersebut, hitung tingkat kesalahannya menggunakan teknik MSE (Mean Squared Error)
yaitu jumlah dari (kuadrat dari (hasil terhitung – hasil pada data awal)) / jumlah data

Dim solusi As Solution() = New Solution(2) {}
For i As Integer = 0 To 2
	solusi(i) = New Solution(jumlahBobot)
	solusi(i).bobot = CariSolusiAcak(jumlahBobot)
	solusi(i).nilaiKesalahan = MeanSquaredError(contohData, solusi(i).bobot)
Next

* Gunakan fungsi ini untuk menghitung tingkat kesalahan dari masing-masing data input
Hitung tingkat kesalahan nilai jawaban menggunakan teknik Mean Squared Error
dihitung dengan rumus jumlah dari (kuadrat dari (nilai jawaban – nilai hasil pada matriks data)) / jumlah data
Nilai jawaban yang baru bisa jadi mengembalikan nilai MSE yang lebih tinggi, sehingga nilai jawaban ini tidak bisa dipakai

Private Function MeanSquaredError(contohData As Double()(), bobot As Double()) As Double
Me.setBobot(bobot)

Dim contohDataKolomKriteria As Double() = New Double(jumlahSarafInput - 1) {}
Dim contohDataKolomHasil As Double() = New Double(jumlahSarafOutput - 1) {}

Dim hasil As Double = 0.0
For i As Integer = 0 To contohData.Length - 1
	Array.Copy(contohData(i), contohDataKolomKriteria, jumlahSarafInput)
	Array.Copy(contohData(i), jumlahSarafInput, contohDataKolomHasil, 0, jumlahSarafOutput)
	Dim dataKolomHasil As Double() = Me.ComputeOutputs(contohDataKolomKriteria)
	For j As Integer = 0 To dataKolomHasil.Length - 1
		hasil += ((dataKolomHasil(j) - contohDataKolomHasil(j)) * (dataKolomHasil(j) - contohDataKolomHasil(j)))
	Next
Next
Return hasil / contohData.Length
End Function

4b. Pada setiap perulangan,
Urutkan solusi berdasarkan tingkat kesalahan terendahnya, kemudian masukkan nilai bobot terbaik – lainnya – terburuk sesuai urutan yang ada

Array.Sort(solusi)
Dim bobotTerbaik As Double() = solusi(indeksSolusiTerbaik).bobot
Dim bobotLainnya As Double() = solusi(indeksSolusiLainnya).bobot
Dim bobotTerburuk As Double() = solusi(indeksSolusiTerburuk).bobot

4c. Cari nilai centroid, yaitu nilai tengah dari solusi lainnya ke solusi terbaik

Dim bobotCentroid As Double() = Centroid(bobotLainnya, bobotTerbaik)

* Gunakan fungsi ini untuk mencari nilai centroid

Private Function Centroid(bobotLainnya As Double(), bobotTerbaik As Double()) As Double()
	Dim jumlahBobot As Integer = bobotLainnya.Length
	Dim hasil As Double() = New Double(jumlahBobot - 1) {}
	For i As Integer = 0 To hasil.Length - 1
		hasil(i) = (bobotLainnya(i) + bobotTerbaik(i)) / 2.0
	Next
	Return hasil
End Function

4d. Cari nilai expanded, yaitu nilai centroid ditambah (nilai centroid – nilai terburuk) dikali 2
Kemudian hitung tingkat kesalahannya menggunakan teknik MSE (Mean Squared Error)
Jika nilai kesalahan expanded kurang dari nilai kesalahan terburuk, maka nilai expanded akan menggantikan nilai terburuk

Dim bobotExpanded As Double() = Expanded(bobotCentroid, bobotTerburuk)
Dim nilaiKesalahanExpanded As Double = MeanSquaredError(contohData, bobotExpanded)
If nilaiKesalahanExpanded < solusi(indeksSolusiTerburuk).nilaiKesalahan Then
	Array.Copy(bobotExpanded, bobotTerburuk, bobotExpanded.Length)
	solusi(indeksSolusiTerburuk).nilaiKesalahan = nilaiKesalahanExpanded
	Continue While
End If

4e. Cari nilai reflected, yaitu nilai centroid ditambah (nilai centroid – nilai terburuk) dikali 1
Kemudian hitung tingkat kesalahannya menggunakan teknik MSE (Mean Squared Error)
Jika nilai kesalahan reflected kurang dari nilai kesalahan terburuk, maka nilai reflected akan menggantikan nilai terburuk

Dim bobotReflected As Double() = Reflected(bobotCentroid, bobotTerburuk)
Dim nilaiKesalahanReflected As Double = MeanSquaredError(contohData, bobotReflected)
If nilaiKesalahanReflected < solusi(indeksSolusiTerburuk).nilaiKesalahan Then
	Array.Copy(bobotReflected, bobotTerburuk, bobotReflected.Length)
	solusi(indeksSolusiTerburuk).nilaiKesalahan = nilaiKesalahanReflected
	Continue While
End If

4f. Cari nilai contracted, yaitu nilai centroid ditambah (nilai centroid – nilai terburuk) dikali – 0.5
Kemudian hitung tingkat kesalahannya menggunakan teknik MSE (Mean Squared Error)
Jika nilai kesalahan contracted kurang dari nilai kesalahan terburuk, maka nilai contracted akan menggantikan nilai terburuk

Dim bobotContracted As Double() = Contracted(bobotCentroid, bobotTerburuk)
Dim nilaiKesalahanContracted As Double = MeanSquaredError(contohData, bobotContracted)
If nilaiKesalahanContracted < solusi(indeksSolusiTerburuk).nilaiKesalahan Then
	Array.Copy(bobotContracted, bobotTerburuk, bobotContracted.Length)
	solusi(indeksSolusiTerburuk).nilaiKesalahan = nilaiKesalahanContracted
	Continue While
End If

Gunakan 3 fungsi dibawah ini untuk mencari nilai reflected, expanded, contracted
Ilustrasi singkat adalah sebagai berikut:
b----------x----------c----------y----------z
buruk-----------------centroid

Tarik garis lurus antara posisi terburuk dengan posisi centroid
Kemudian tambahkan garis terusan dari posisi centroid sepanjang jarak sebelumnnya
Posisi Expanded berada pada posisi z, dengan jarak (centroid-buruk) * koefisien gamma, dalam contoh ini bernilai 2.0
Posisi Reflected berada pada posisi y, dengan jarak (centroid-buruk) * koefisien alpha, dalam contoh ini bernilai 1.0
Posisi Contracted berada pada posisi x, dengan jarak (centroid-buruk) * koefisien beta, dalam contoh ini bernilai 0.5

'Gunakan fungsi ini untuk mencari nilai expanded
Private Function Expanded(Centroid As Double(), bobotTerburuk As Double()) As Double()
	Dim jumlahBobot As Integer = Centroid.Length
	Dim gamma As Double = 2.0
	Dim hasil As Double() = New Double(jumlahBobot - 1) {}
	For i As Integer = 0 To hasil.Length - 1
		hasil(i) = Centroid(i) + (gamma * (Centroid(i) - bobotTerburuk(i)))
	Next
	Return hasil
End Function

'Gunakan fungsi ini untuk mencari nilai reflected
Private Function Reflected(Centroid As Double(), bobotTerburuk As Double()) As Double()
	Dim jumlahBobot As Integer = Centroid.Length
	Dim alpha As Double = 1.0
	Dim hasil As Double() = New Double(jumlahBobot - 1) {}
	For i As Integer = 0 To hasil.Length - 1
		hasil(i) = Centroid(i) + (alpha * (Centroid(i) - bobotTerburuk(i)))
	Next
	Return hasil
End Function

'Gunakan fungsi ini untuk mencari nilai contracted
Private Function Contracted(Centroid As Double(), bobotTerburuk As Double()) As Double()
	Dim jumlahBobot As Integer = Centroid.Length
	Dim rho As Double = -0.5
	Dim hasil As Double() = New Double(jumlahBobot - 1) {}
	For i As Integer = 0 To hasil.Length - 1
		hasil(i) = Centroid(i) + (rho * (Centroid(i) - bobotTerburuk(i)))
	Next
	Return hasil
End Function

4g. Cari nilai acak lagi
Kemudian hitung tingkat kesalahannya menggunakan teknik MSE (Mean Squared Error)
Jika nilai kesalahannya kurang dari nilai kesalahan terburuk, maka nilai ini akan menggantikan nilai terburuk

Dim bobotSolusiAcak As Double() = CariSolusiAcak(jumlahBobot)
Dim nilaiKesalahanSolusiAcak As Double = MeanSquaredError(contohData, bobotSolusiAcak)
If nilaiKesalahanSolusiAcak < solusi(indeksSolusiTerburuk).nilaiKesalahan Then
	Array.Copy(bobotSolusiAcak, bobotTerburuk, bobotSolusiAcak.Length)
	solusi(indeksSolusiTerburuk).nilaiKesalahan = nilaiKesalahanSolusiAcak
	Continue While
End If

4h. Jika nilai kesalahan dari posisi expanded – reflected – contracted – solusi acak tidak ada yang kurang dari nilai kesalahan solusi terburuk,
Maka hitung nilai solusi lainnya dan solusi terburuk yang baru.

4h1. Hitung nilai solusi terburuk yang baru, yaitu (nilai terburuk + nilai terbaik) dibagi 2
Kemudian hitung tingkat kesalahannya menggunakan teknik MSE (Mean Squared Error)

For j As Integer = 0 To jumlahBobot - 1
	bobotTerburuk(j) = (bobotTerburuk(j) + bobotTerbaik(j)) / 2.0
Next
solusi(indeksSolusiTerburuk).nilaiKesalahan = MeanSquaredError(contohData, bobotTerburuk)

4h2. Hitung nilai solusi lainnya yang baru, yaitu (nilai lainnya + nilai terbaik) dibagi 2
Kemudian hitung tingkat kesalahannya menggunakan teknik MSE (Mean Squared Error)

For j As Integer = 0 To jumlahBobot - 1
	bobotLainnya(j) = (bobotLainnya(j) + bobotTerbaik(j)) / 2.0
Next
solusi(indeksSolusiLainnya).nilaiKesalahan = MeanSquaredError(contohData, bobotLainnya)

4i. Dapatkan solusi terbaik, yaitu solusi pada indeks terbaik

Me.setBobot(solusi(indeksSolusiTerbaik).bobot)

* Gunakan fungsi ini untuk memasukkan matriks bobot awal kedalam 4 matriks data yaitu matriks ihBobot, hBias, hoBobot, oBias
ihBobot adalah matriks bobot pada jaringan saraf input-tersembunyi, dengan jumlah data = jumlah saraf input * jumlah saraf tersembunyi (3 * 4 = 12 buah)
hBias adalah matriks nilai bias pada jaringan saraf input-tersembunyi, dengan jumlah data = jumlah saraf tersembunyi (4 buah)
hoBobot adalah matriks bobot pada jaringan saraf tersembunyi-output, dengan jumlah data = jumlah saraf tersembunyi * jumlah saraf output (4 * 2 = 8 buah)
oBias adalah matriks nilai bias pada jaringan saraf tersembunyi-output, dengan jumlah data = jumlah saraf output (2 buah)

Public Sub setBobot(bobot As Double())
	Dim jumlahBobot As Integer = (jumlahSarafInput * jumlahSarafTersembunyi) + (jumlahSarafTersembunyi * jumlahSarafOutput) + jumlahSarafTersembunyi + jumlahSarafOutput
	If bobot.Length <> jumlahBobot Then
		Throw New Exception("Pada fungsi SetBobotAwal, panjang matriks bobot: " & bobot.Length & " tidak sama dengan jumlah bobot yang seharusnya, yaitu " & jumlahBobot)
	End If

	Dim k As Integer = 0
	For i As Integer = 0 To jumlahSarafInput - 1
		For j As Integer = 0 To jumlahSarafTersembunyi - 1
			ihBobot(i)(j) = bobot(k)
			k += 1
		Next
	Next
	For i As Integer = 0 To jumlahSarafTersembunyi - 1
		hBias(i) = bobot(k)
		k += 1
	Next
	For i As Integer = 0 To jumlahSarafTersembunyi - 1
		For j As Integer = 0 To jumlahSarafOutput - 1
			hoBobot(i)(j) = bobot(k)
			k += 1
		Next
	Next
	For i As Integer = 0 To jumlahSarafOutput - 1
		oBias(i) = bobot(k)
		k += 1
	Next
End Sub

5. Lakukan perhitungan dari masing-masing contoh data menggunakan nilai bobot dan nilai bias yang sudah ditemukan
Penjelasan tentang fungsi ini akan dijelaskan pada perhitungan dibawah ini (poin 5a – 5g)

Dim output() As Double = jst.hitungNilaiOutput(input)

Memasuki perhitungan utama pada fungsi hitungNilaiOutput

5a. Beri nilai matriks input sesuai array input

For i = 0 To input.Length - 1
	Me.inputs(i) = input(i)
Next i

5b. Hitung matriks ihJumlahBobotDanBias dengan cara perkalian matriks antara matriks input dan matriks ihBobot

For j = 0 To jumlahSarafTersembunyi - 1
	For i = 0 To jumlahSarafInput - 1
		ihJumlahBobotDanBias(j) += Me.inputs(i) * ihBobot(i)(j)
	Next i
Next j

5c. Kemudian masukkan nilai bias pada matriks ihJumlahBobotDanBias

For i = 0 To jumlahSarafTersembunyi - 1
	ihJumlahBobotDanBias(i) += hBias(i)
Next i

5d. Hitung nilai output sementara dengan menggunakan fungsi HyperTan untuk masing-masing data pada matriks hJumlahBobotDanBias
Penjelasan tentang fungsi HyperTan akan dijelaskan pada perhitungan dibawah ini

For i As Integer = 0 To jumlahSarafTersembunyi - 1
	Me.hOutput(i) = HyperTan(hJumlahBobotDanBias(i))
Next

* Gunakan fungsi ini untuk menghitung nilai fungsi HyperTan (tanh)

Private Shared Function HyperTan(x As Double) As Double
	If x < -20.0 Then
		Return -1.0
	ElseIf x > 20.0 Then
		Return 1.0
	Else
		Return Math.Tanh(x)
	End If
End Function

5e. Hitung matriks hoJumlahBobotDanBias dengan cara perkalian matriks antara matriks output sementara dan matriks hoBobot

For j = 0 To jumlahSarafOutput - 1
	For i = 0 To jumlahSarafTersembunyi - 1
		hoJumlahBobotDanBias(j) += hOutput(i) * hoBobot(i)(j)
	Next i
Next j

5f. Kemudian masukkan nilai bias pada matriks hoJumlahBobotDanBias

For i = 0 To jumlahSarafOutput - 1
	hoJumlahBobotDanBias(i) += oBias(i)
Next i

5g. Hitung nilai output akhir dengan menggunakan fungsi Softmax untuk masing-masing data pada matriks hoJumlahBobotDanBias
Penjelasan tentang fungsi Softmax akan dijelaskan pada perhitungan dibawah ini (poin 5g1 – 5g3)

Dim hasil() As Double = Softmax(hoJumlahBobotDanBias)
hasil.CopyTo(Me.outputs, 0)
Return hasil

Memasuki perhitungan utama pada fungsi Softmax

5g1. Cari nilai maksimal data

Dim maksData As Double = hoJumlahBobotDanBias(0)
For i = 0 To hoJumlahBobotDanBias.Length - 1
	If hoJumlahBobotDanBias(i) > maksData Then
		maksData = hoJumlahBobotDanBias(i)
	End If
Next i

5g2. Cari nilai skala

Dim skala As Double = 0.0
For i = 0 To hoJumlahBobotDanBias.Length - 1
	skala += Math.Exp(hoJumlahBobotDanBias(i) - maksData)
Next i

5g3. Hitung hasil akhir
Sehingga semua jumlah bobot pada parameter matriks hoJumlahBobotDanBias akan bernilai 1

Dim hasil(hoJumlahBobotDanBias.Length - 1) As Double
For i = 0 To hoJumlahBobotDanBias.Length - 1
	hasil(i) = Math.Exp(hoJumlahBobotDanBias(i) - maksData) / skala
Next i

6. Jika nilai output bernilai kurang dari 0.5 maka pelanggan tersebut memiliki nilai hasil Ditolak
Jika nilai output bernilai lebih dari 0.5 maka pelanggan tersebut memiliki nilai hasil Diterima
Kemudian bandingkan nilai output dengan nilai hasil pada contoh data
Jika hasilnya sudah sama, maka catat data ini kedalam jumlah data benar
Jika hasilnya tidak sama, maka catat data ini kedalam jumlah data salah

If output(0) < output(1) Then
	Console.Write("-> Ditolak   ")
	If contohData(i)(jumlahKolom - 2) < contohData(i)(jumlahKolom - 1) Then
		jumlahBenar += 1
		Console.WriteLine("Benar")
	ElseIf contohData(i)(jumlahKolom - 2) > contohData(i)(jumlahKolom - 1) Then
		jumlahSalah += 1
		Console.WriteLine("Salah")
	End If
Else
	Console.Write("-> Diterima  ")
	If contohData(i)(jumlahKolom - 2) < contohData(i)(jumlahKolom - 1) Then
		jumlahSalah += 1
		Console.WriteLine("Salah")
	ElseIf contohData(i)(jumlahKolom - 2) > contohData(i)(jumlahKolom - 1) Then
		jumlahBenar += 1
		Console.WriteLine("Benar")
	End If
End If

7. Catat tingkat kecocokan perhitungan data dengan hasil awal pada data
Langkah ini tidak wajib, hanya untuk mengetahui seberapa besar tingkat kecocokan perhitungan untuk data baru yang akan dihitung selanjutnya

Console.WriteLine("Jumlah perhitungan benar = " & jumlahBenar & ", jumlah perhitungan salah = " & jumlahSalah)
Console.WriteLine("Tingkat kecocokan perhitungan dengan hasil data adalah " & (jumlahBenar / (jumlahBenar + jumlahSalah)).ToString("F2"))

8. Lakukan perhitungan yang sama (poin 5 dan 6) untuk masing-masing data baru

For i As Integer = 0 To dataBaru.Length - 1
	Console.Write("Pelanggan " & Chr(i + 65 + 8) & "  ")

	Dim input(jumlahKolom - 3) As Double
	Array.Copy(dataBaru(i), input, jumlahKolom - 2)
	For j = 0 To input.Length - 1
		Console.Write(IIf(input(j) >= 0, " ", "") & input(j).ToString("F2") & " ")
	Next j
	Console.Write(" ")

	Dim output() As Double = jst.hitungNilaiOutput(input)
	For j = 0 To output.Length - 1
		Console.Write(output(j).ToString("F2") & " ")
	Next j
	Console.Write(" ")

	If output(0) < output(1) Then
		Console.Write("-> Ditolak ")
	Else
		Console.Write("-> Diterima")
	End If
	Console.WriteLine("")
Next

* Agar dapat menjalankan fungsi Simplex diatas, maka diperlukan sebuah Class Solution untuk menampung semua data bobot dan nilai kesalahan solusi tersebut. Deklarasi Class Solution adalah sebagai berikut:

Private Class Solution
	Implements IComparable(Of Solution)
	Public bobot As Double()
	Public nilaiKesalahan As Double

	Public Sub New(jumlahBobot As Integer)
		Me.bobot = New Double(jumlahBobot - 1) {}
		Me.nilaiKesalahan = 0.0
	End Sub

	'Fungsi untuk mengurutkan nilai kesalahan dari yang terendah (terbaik) ke tertinggi (terburuk)
	Public Function CompareTo(other As Solution) As Integer Implements IComparable(Of Solution).CompareTo
		If Me.nilaiKesalahan < other.nilaiKesalahan Then
			Return -1
		ElseIf Me.nilaiKesalahan > other.nilaiKesalahan Then
			Return 1
		Else
			Return 0
		End If
	End Function
End Class

Hasil akhir adalah: (klik untuk perbesar gambar)

cmd53a

Contoh modul / source code dalam bahasa VB (Visual Basic) dapat didownload disini:

[sdm_download id=”988″ fancy=”0″]



Jika membutuhkan jasa kami dalam pembuatan program, keterangan selanjutnya dapat dilihat di Fasilitas dan Harga
Jika ada yang kurang paham dengan langkah-langkah algoritma diatas, silahkan berikan komentar Anda.
Selamat mencoba.

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *